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Questions of today

1. Let  be holomorphic, and  be harmonic. Show that  is harmonic.
2. Let , and let  be a domain of . Let  be a confomal map with power

series expansion at :

Show that the area of  is given by .
3. Let  be conformal, suppose  can be extended continuously at some point , show

that .
4. Show that the punctured disc  is not conformally equivalent to the annulus 

, where .
5. Let  be a simply connected domain, and  be holomorphic with at least two fixed

points. Show that  is the identity.
6. Let  be a simply connected domain, and  be two points in . Find all the automorphism

(comformal mapping onto itself) .

Hints & solutions of today

1. Use multivariable chain rule. One useful characterization of harmonic function is :  harmonic iff .
2. Use change of variable formula.
3. If  for some  in . Choose disjoint neighberhoods  and  of  and .  contains a

delta neighbourhood of , while  by the injectivity of . Use this to derive a
contradiction.

4. By Riemann's extension theorem, such a conformal map would induce a map from  to the closure of
the annulus. Such an extension must be injective by question 3, and hence must be a conformal map to
its image(Injective implies conformal). Finally, use Cauchy theorem to show that the map cannot be
conformal.

5. Reduce the question to the case . Then apply Schwarz lemma.
6. Reduce the question to the case , and show that the conformal map extends to a conformal map 

 sending  to . (You need to use question 3, but why can't  and  be sent to the
boundary of ?)
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