Content

Tutorial 10 ---Chan Ki Fung

BACK

Questions of today

Let g: Ω' → C be holomorphic, and f: Ω → Ω' be harmonic. Show that f ∘ g is harmonic.
 Let D = {z ∈ C : |z| < 1}, and let Ω be a domain of C. Let f : D → Ω be a confomal map with power series expansion at 0:

$$f(z)=\sum_{n=0}^\infty a_n z^n$$

Show that the area of Ω is given by $\pi \sum_{n=0}^\infty n |a_n|^2$.

- 3. Let $f:\Omega o\Omega'$ be conformal, suppose f can be extended continuously at some point $a\in\partial\Omega$, show that $f(a)
 ot\in\Omega'$.
- 4. Show that the punctured disc $\mathbb{D}\setminus\{0\}$ is not conformally equivalent to the annulus $\{z\in\mathbb{C}:r<|z|< R\}$, where R>r>0.
- 5. Let $\Omega \neq \mathbb{C}$ be a simply connected domain, and $f: \Omega \to \Omega$ be holomorphic with at least two fixed points. Show that f is the identity.
- 6. Let $\Omega \neq \mathbb{C}$ be a simply connected domain, and a, b be two points in Ω . Find all the automorphism (comformal mapping onto itself) $\Omega \setminus \{a, b\} \rightarrow \Omega \setminus \{a, b\}$.

Hints & solutions of today

- 1. Use multivariable chain rule. One useful characterization of harmonic function is : f harmonic iff $f_{z\bar{z}} = 0$.
- 2. Use change of variable formula.
- 3. If f(a) = f(z) for some z in Ω . Choose disjoint neighborhoods V and U of a and z. f(U) contains a delta neighbourhood of f(z), while $f(U) \cap f(V \cap \Omega) = \emptyset$ by the injectivity of f. Use this to derive a contradiction.
- 4. By Riemann's extension theorem, such a conformal map would induce a map from D to the closure of the annulus. Such an extension must be injective by question 3, and hence must be a conformal map to its image(Injective implies conformal). Finally, use Cauchy theorem to show that the map cannot be conformal.
- 5. Reduce the question to the case $\Omega = \mathbb{D}$. Then apply Schwarz lemma.
- 6. Reduce the question to the case $\Omega = \mathbb{D}$, and show that the conformal map extends to a conformal map $\mathbb{D} \to \mathbb{D}$ sending $\{a, b\}$ to $\{a, b\}$. (You need to use question 3, but why can't a and b be sent to the boundary of \mathbb{D} ?)

